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The following "rational" moment problem is discussed. Given distinct real
numbers AI. A2•.. ,. Ap (the "poles" of the problem), real numbers Co and cj'l
(j = 1.2,3•... ; i = 1, 2"", p). and a non-empty compact subset K of (-:xl. + :xl),

find necessary and sufficient conditions that there exist a non-negative Borel
measure /1-, supported on K, such that Co = fK d/1-(t) and cll) = fK(t - A,)-/ df.l.(t)

for j = 1,2,3,." and i = 1,2"". p. 1~~4 Academic Press, Inc.

1. INTRODUCTION

In this paper we consider the following "rational" moment problem. Let
Al , A2 , ... , Ap be distinct real numbers, let {c~i)}j~ " i = 1,2, ... , p, be
sequences of real numbers, let Co be a real number, and let K be a
non-empty compact subset of IR = ( - 00, + (0). Find necessary and suffi­
cient conditions that there exist a non-negative Borel measure f.L, sup­
ported on K, such that

(1)
j = 1,2,3, ... ; i = 1,2, ... , p.

Co = ! df.L(t) ,
K

c(i)=! df.L(t),
1 K(t-Ay

The points AI' A2 , .•• , Ap will be called the poles of the problem. We also
consider rational moment problems with a pole at 00, and rational moment
problems having a countable number of poles.

Rational moment problems are studied in [7-9,11-15] in cases in which
the domain of integration K is an interval. In these papers many of the
results of the classical moment problems of Stieltjes and Hamburger [1]
are extended to various types of rational moment problems, and a theory
of orthogonal and quasi-orthogonal rational functions with specified poles
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is developed, analogous to the theory of orthogonal and quasi-orthogonal
polynomials [1, 3, 5].

In this paper we establish solvability criteria for rational moment
problems with arbitrary poles AI' Az, ... , Ap (or AI' Az, A3 , ..• in the case
of a countable number of poles) and arbitrary compact supporting set K.
The criteria are that certain linear functionals determined by the geometry
of the compact set K be non-negative when applied to a certain class of
rational functions whose poles are those of the given moment problem.
These criteria are essentially that certain quadratic forms be non-negative
on the vector space spanned by the given basis functions 1, (t - AI) - I,

(t - A1)-z, ... , (t - Az)-1, (t - Az)-z, ... . Analogous results for the case
in which K is an intetval are given in [8, 9, 11, 14]. Our solvability criteria
for rational moment problems will be derived from a variant of M. Riesz's
theorem on the solvability of polynomial moment problems [1, p. 71; 17].

It will be useful to consider the truncated moment problem in which
Eq. (l) is replaced by

(2)
j = 1,2, ... ,2n;;i = 1,2, ... ,p,

where 2n p 2nz, ... , 2np are positive even integers. For all positive inte­
gers k I' k z, ... , k p' and k, let g(k) be the set of all polynomials of degree
~ k with real coefficients, and let .9P(k l , k z, ... , k p ) be the set of all
rational functions R of the form

(3)

where the coefficients ao, aij E IR. By the partial fractions decomposition,
.9P(k l' k z, ... , k p) is the set of all rational functions R of the form

with P Eg(k 1 + k z + +k p )' Define the linear functional 'P =

'P(k
l
,k

2
, ..• ,k

p
) on fH(k 1, k z, , kp ) by setting
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whenever (3) holds. Then J.L is a solution of the truncated moment
problem (2) if and only if

whenever R E ~(2nl' 2n 2 , ••. , 2n p )'

In order to relate the truncated rational moment problem (2) to
M. Riesz's theorem for the truncated polynomial moment problem, for
each p-tuple of positive integers (k 1,k 2, ... ,kp)' let k = k 1 + k 2 +
.,. +kp and define the linear functional Y = Y(k,.k

2
•.• k,,) on .9(k) by

first setting

and then setting

k

yep) L~jSj
j~O

whenever P(t) == "[,J~O~jtj E.9(k).
Note that the definition of the functional 'P(k,.k

20
...• k ) is essentially

independent of the choice of k 1, k 2 , •.• , k p , but that the definition of the
functional Y(k ,. k

20
...• k,,) is not: 'P(k ,. k z, ... ,k,,) is always the restriction of

'P(k,+/I. kz+lz•.... k,,+I,,) to the smaller domain ~(kl'k2' ... ,kp), but
Y(k

1
• k z..... k,,) is not, in general, the restriction of Y(k

l
+/" kz+l z, .... k,,+I,,)

to the smaller domain .9(k I + k 2 + ... + k p)' For example, in the case of
a single pole (p = 1) at 0 (AI = 0), the functionals Y(l)' Y(2)' Y(w'" are
determined by the sequences

So = C~l),

So = c~l),

S2 = Co

S2 = ell),

respectively.
For each choice of p positive even integers 2n l , 2n 2 , ••• , 2np , there is a

truncated polynomial moment problem associated with the truncated
rational moment problem (2): find necessary and sufficient conditions that
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there exist a non-negative Borel measure v, supported on K, such that
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j = 0,1, . .. ,2n,

where 2n = 2n) + 2n z + ... +2n p ' A solution v of this truncated poly­
nomial moment problem yields a solution J.L of the truncated rational
moment problem (2), namely

That the non-negative Borel measure J.L is in fact a solution of the
truncated rational moment problem (2) follows from the observation that
the functions

j = 0,1, ... , 2n

span 9i'(2nl' 2n z"'" 2n p ), and from the equations

.,( (I - A,)'"'(I - A,';,", ... (I - A,)'"' )

= sj(2n),2n z,···,2np )

= f t j dv( t)
K

t j

= fK (t - AI )Z"I( t - Az)z"2

j=0,1, ... ,2n.

2. RESULTS FOR POLYNOMIAL MOMENT PROBLEMS

Associated with every sequence of real numbers {s}/'=oo is a linear
functional .'7 defined on the set of polynomials P(t) == L:~~o{jtj of degree
s k by

k

.'7(P) = L {jSj'
j=oO

The functional .'7, and sequence {s)/'_o, are said to be non-negative on K,



76 JAMES D. CHANDLER, JR.

a subset of IR, if and only if SC(P) 2 0 for every polynomial P of degree
::s; k which is non-negative everywhere on K. The relationship between
the non-negativity of sequences and the solvability of polynomial moment
problems was discovered by M. Riesz [17]. The following variant of his
well-known theorem is the basis for our results (see [2] for related results).

THEOREM 1. Let K be a non-empty compact subset of IR, and let 2n be
a positive even integer. Then there exists a non-negative Borel measure v,
supported on K, such that

Sj = f t
j
dv( t),

K
j = 0,1, ... , 2n (4)

if and only if {s)}:o is non-negative on K.

Proof The condition that {s)}:o be non-negative on K is clearly
necessary. To prove that it is sufficient, we use the following theorem on
the extension of non-negative linear functionals [1, Theorem 2.6.2, p. 69].

Suppose that @ is a real vector space, that IDe is a vector subspace of @,

that Sf is a convex cone in @ (i.e., Sf is a convex subset of @ such that
af E Sf whenever a 2 0 and f E Sf), and that SC is a real-linear functional
on IDe which is non-negative on Sf n IDe. Then SC can be extended to a
real-linear functional SC' on @ which is non-negative on Sf, provided that
for every f E @ there exist m l' m 2 E IDe such that (m 1 - f) E Sf and
(J - m 2 ) E Sf.

Let @ = C(K), the set of all real-valued continuous functions with
domain K; let IDe be the set of all restrictions to K of polynomials
belonging to 9"(2n); and let Sf be the set of all functions belonging to
@ = C(K) which are non-negative everywhere on K. Define the real-lin­
ear functional SC on IDe by

2n

SC(P) = L~jSj
j~O

whenever

2n

P(t) = 1: ~jtj,
j~O

t E K.

By the hypothesis that (s)}:o is non-negative on K, SC is non-negative on
Sf n IDe. The constant function h(t) = 1, t E K, belongs to IDe, and for
every function g E @ = C(K) the functions (1lglih - g) and (g + Ilgllh)
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are non-negative everywhere on K and hence belong to SL (Here Ilgll =

max{lg(t)I: t E K}, g E C(K).) By the theorem cited above, there exists an
extension of 09 to a real-linear function 09/ on @ which is non-negative
on Sl·.

Since 09' is non-negative on Sl, and since (1lgllh - g),(g + Ilgllh) E Sl
for every g E C( K), it follows that

o9'(g) ~ Ilgll·o9'(h) = Ilgll'o9(h) = Ilgll· So'

o9'(g) ~ -llgll . o9'(h) = -llgll' Y(h) = -llgll . So'

and hence that

IY'(g)1 ~ So '1IglI, gEC(K).

By the Riesz representation theorem [4, p. 265], there exists a non-nega­
tive Borel measure II on K such that

Sj = Y(t j
) = Y'(t j

) = f t j dll(t)
K

for t = 0,1, ... ,2n. I

The following variant of a lemma of Krein and Nudelman [10] provides
a characterization of the polynomials which are positive everywhere on a
compact set K obtained from a bounded closed interval [a, bl by removing
a finite number of disjoint open subintervals (see also [6]).

LEMMA. Suppose that - 00 < a ~ a l < f31 ~ a2 < f32 ~ ... ~ aM <
f3 M ~ b < + 00, and that P is a polynomial which is positive everywhere on

M

K= [a,b]\ U (a m,f3m)'
m~l

Then

P(t) = L n(t-am)(t-f3m)PJ (t),
J~mEJ

where .L = {I, 2, ... , M} and, for every J r;;..L, PJ is a polynomial which is
non-negative everywhere on [a, b] with deg(PJ ) + 2 card(J) ~ deg(P).

Note. This lemma is proved by Krein and Nudelman [10, pp. 292-293,
307] in the case where

-00 < a < a. < f31 < a 2 < 132 < .. , < aM < 13M < b < +00;

640/79/1-6
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we need to establish the result in the case in which K may contain one or
more isolated points.

Proof Since P is positive at every point of each of the closed subinter­
vals

(some of which may consist of a single point), the number of zeros of P in
each of the open intervals

must be even, provided they are counted according to multiplicity. Let
t" t z,"" t z/ be these zeros. Then

21

P(t) == Q(t) n (t - tJ,
j~l

where Q is a polynomial with no zeros in [a, b]. Since both P(t) and
nf~l(t - t) are positive at the endpoints t = a and t = b, Q is also
positive at both a and b, and hence on [a, b].

Suppose that tl' t z,.·., t Zk are the zeros of P in (ai' (31)' Then each
t - tj is a convex combination of t - 0'1 and t - {31'

where

Hence

2k Zk

n (t - tj ) = n [A j ' (t - ad + BJ ' (t - (3d]
J ~ 1 J ~ 1

= Q,(t) + Qz(t) . (t - a,)(t - (31)'

where QI and Q z are sums of polynomials of the form

C > 0; r, S = 0, 1,2, ...

such that deg(Qt) ~ 2k, deg(Qz) ~ 2k - 2.
Applying a similar argument to each of the remaining open intervals

(a z, {3z), ... , (aM' 13M) and combining the results, we have the desired
conclusion. I
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3. SOLVABILITY CRITERIA FOR RATIONAL MOMENT PROBLEMS
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Let K be a non-empty compact set with a = min K, b = max K. Then
the set of bounded components of the complement of K in IR is an at most
countable (possibly empty) collection {(am, 13m): mEn} of pairwise dis­
joint, bounded open intervals, each contained in [a, b], such that

K = [a, b] \ U (am' 13m)'
mEn

PROPOSITION 1. There exists a solution /-t of the truncated rational
moment problem (2) if and only If

(5)

whenever J is a finite subset of {} and Q is a polynomial non-negative
ecerywhere on [a, b] with degree s; 2n. + 2n 2 + ... +2n p - 2 card(j).
(The product nmE!{t - amXt - 13m) is taken to be 1 when J is the empty
set .)

Proof Suppose there is a solution /-t. Then, with Y = ,9(2n\. 2n20" . 2n,,)'

we have that

y( n (t - am)(t - f3m)Q(t))
mE!

Q( t)
= f n(t-am )(t-f3m)' 2 2n d/-t(t) 20,

KmE! (t - Ad n\ ••• (t - AI') "

since n mE it - amXt - 13m) 2 0 whenever t E K, with J and Q as
above.

Conversely, suppose that (5) holds for all such J and Q. Let P be any
polynomial which has degree s; 2n, where n = n 1 + n 2 + ... +n p ' and
which is non-negative everywhere on K. Let E > 0 and set P,(t} ;: P(t) +
E. Then P

E
has degree s; 2n and is positive on K. Let L be the set of all

indices m E {} for which P
E

is zero or negative at some point of (am' 13m ),

For each m E {}, PE is positive at both the endpoints am and 13m of
(am, 13m ), and am < 13m; hence if PE is negative at some point of (am' 13m)
then PE has a zero in (am, 13m)' Thus ..It is the set of all indices m E {}

such that P£ has a zero in (am' 13m)' and therefore ..It is finite. By the
lemma, applied to PE on the set [a, b] \ U mE .,(am , 13".), we have that

PE(t);: I: n (I - am)(1 - f3m)Q!(t),
J,;.LmEJ
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where each Q) is a polynomial which is non-negative everywhere on [a, b1
with deg(Q) + 2 card(j) ~ deg(P.} ~ 2n. By (5) and the linearity of ..9',

yep,) = L Y( fl (t - am)(t - f3m)QAt)) ~ O.
)>;If mE)

Since ..9' is linear, it follows that ..9'(P) = ..9'(P, - E . 1) = ..9'(P.} ­
E..9'(l) = ..9'(P) - ESo ~ -ESO for every E > O. Therefore

..9'( P) ~ O.

Since this inequality holds for every polynomial P which is non-negative
everywhere on K and has degree ~ 2n, M. Riesz's theorem implies that
there exists a non-negative Borel measure v, supported on K, such that

Let

Sj = f t i dv( t),
K

j = 0,1, ... ,2n.

Then J.L is a non-negative Borel measure, supported on K, such that

•C, -Ad'"' t'. (, _ A"J'"' ) ~ fK (I - A, )'"' .". (I _ A"t'. d~(t),
j = 0,1, ... , 2n

and hence such that (2) holds. I

PROPOSITION 2. There exists a solution J.L of the tnmcated rational
moment problem (2) if and only if

S(2n
1
.2n

2
, ... ,2n

p l ( fl (t - am)(t - f3m)A(t)2) ~ 0,
mE]

..9't2nl,2n2, .... 2npl(t - a) fl (t - am)(t - f3m)B(t)2) ~ 0,
mE]

S(2n
1
.2n

2
, •.• ,2npl(b - t) fl (t - am)(t - f3m)C(t)2) ~ 0,

mE]

S(2n
1
,2n

2
•.•.• 2npl(b - t)(t - a) n (t - am)(t - f3m)D(t)2) ~ 0,

mE]

whenever J is a finite subset of n and A, B, C, D are polynomials with real
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coefficients whose degrees are small enough that the arguments of .9 in the
inequalities above have degree ~ 2n.

Proof By a theorem of Lukacs [16, Prob. 47, pp. 78, 260], a polynomial
P is non-negative at every point of [a, b] if and only if

pet) =A(t)2 + (t - a)B(t)2 + (b - t)C(t)2 + (b - tHt - a)D(t)2,

where A, B, C, D are polynomials with real coefficients such that each of
the terms in the sum has degree ~ deg(P). Hence this proposition follows
from Proposition 1 and Lukacs' theorem. I

Let !ft be the set of all rational functions of the form (3) with
k .. k 2' ... , k p arbitrary, and define the linear functional <P on !ft by
setting

p k,

<P( R) = aoco + L L aijC~i)
i= 1 j= I

whenever (3) holds.

THEOREM 2. The full rational moment problem (1) has a solution Jl if
and only if

(
n (t - amHt - f3m)A(t)2 )

<P mEl
(t - A,)2n '(t - A2)2n 2 '" (t _ A

p
)2"p

(

(t-a)n(t-amHt-f3m)B(t)2j
<P mEl

(t - A1)2"1(t - A2)2n 2 '" (t - A
p

/
np

(

(b-t)n(t-am)(t-f3m)C(t)2j
<P mEl

(t - A])2n J(t - A2)2n2 ••• (t _ A
p

)2n"

(

(b - t)(t - a) n (t - amHt - f3m)D(t)2)
<P mEl

(t - A()2n J(t - '\2)2n 2 ••• (t _ A
p

)2n"

~ 0,

~ 0,

~ 0,

~ 0,

whenever J is a finite subset of fl; n\, n 2, .. . , n p are positive integers, and
A,B, C, D are polynomials with real coefficients whose degrees are small
enough that the arguments of <P in the inequalities above belong to !ft.
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Proof It is clear that the inequalities above hold if there is a solution
J.L of the full rational moment problem. Conversely, suppose that the
inequalities above hold. By Proposition 2, for every p-tuple N =

(2n I' 2n 2' ... , 2n) of positive even integers there exists a non-negative
Borel measure J.LN' supported on K, which is a solution of the truncated
rational moment problem (2). Applying Helly's theorems [3, pp. 53-54; 5,
p. 56] to the family of measures {J.L/Ii}, we obtain a solution J.L of the full
rational moment problem, as in [8, pp. 551-553]. I

COROLLARY. The full rational moment problem (I) has a solution J.L if
and only if

(6)

whenever n l , n 2 , ••• , n p are positive integers and P is a polynomial with real
coefficients with degree ::;; 2n l + 2n 2 + ... +2n p , which is non-negative
el 'erywhere on K.

We should like to assert that there exists a solution J.L of (l) if and only
if ep( R) ~ 0 for every R E:Jf which is non-negative everywhere on K. If
none of the poles AI' A2' ... , Ap belongs to K then this assertion follows
from the Corollary. But if one of the poles, say Ai' belongs to K, then it is
difficult to assign a meaning to the statement that R is non-negative
everywhere on K if R is a rational function with a pole at A,; in this case
the Corollary is the closest we can come to such an assertion. Note that, in
all cases, the set of rational functions

P( t)

of the form specified in the Corollary is a positive cone in gpo

4. OTHER RATIONAL MOMENT PROBLEMS; UNIQUENESS

We consider the extension of the rational moment problem (1) to one
having a countable number of real poles: let AI' A2' A3" ... , be distinct
real numbers, let {cY)}j~ [, i = 1,2,3, ... , be sequences of real numbers,
let Co be a real number, and let K be a non-empty compact subset of IR;
find necessary and sufficient conditions that there exist a non-negative
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Borel measure JJ., supported on K, such that
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i,j=1,2,3, .... (7)

THEOREM 3. The rational moment problem with countably many poles
(7) has a solution JJ., supported on K, if and only if the inequalities in
Theorem 2 hold for all positive integers p and all p-tuples of positive even
integers (2n I , 2n 2 , ••. , 2n p )'

Proof It is clear that the inequalities hold if JJ. is a solution of (7).
Conversely, suppose that these inequalities hold. By Theorem 2, for every
positive integer p there is a non-negative Borel measure JJ. p ' supported on
K, such that (1) holds. Applying Helly's theorems to the sequence of
measures {JJ.P};=I as in [8, pp. 551-553], we obtain a non-negative Borel
measure JJ., supported on K, which satisfies (1). I

By a rational moment problem with a pole at 00, we mean a problem of
the following type. Let AI' A2, ... , Ap be distinct real numbers, let {c}O)}j~o

and {cY)}j~l' i = 1, ... , p, be sequences of real numbers, and let K be a
non-empty compact subset of IR; find necessary and sufficient conditions
that there exist a non-negative Borel measure JJ., supported on K, such
that

j = 0,1,2, ... ,

(8)
j= 1,2,3, ... ;i= 1, ... ,p.

For such a problem we must extend the domain of the linear functional cI>
to the set of rational functions R of the form

(9)

with aOj' aij E IR, by setting

k" P k i

cI>( R) = r: aOjcJOl + I: I: aijCY)
j=O i~Ij=1

whenever (9) holds.
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THEOREM 4. The rational moment problem with a pole at 00 (8) has a
solution p., supported on K, if and only If the inequalities in Theorem 2 hold
without restriction on the degrees of the polynomials A, B, C, D.

We omit the proof, which is similar to the proof of Theorem 2.
Finally, we consider rational moment problems with a pole at GO and a

countable number of real poles: let AI' A2' AJ, . " be distinct real numbers,
let (cT)}j~() and {cJi)}j~ I' i = 1,2,3, ... , be sequences of real numbers, and
let K be a non-empty compact subset of IR; find necessary and sufficient
conditions that there exist a non-negative Borel measure p., supported on
K, such that

j = 0,1,2, ... ,

j= 1,2,3, ... ;i= 1,2,3, ....

THEOREM 5. The rational moment problem with a pole at 00 and count­
ably many real poles (10) has a solution p., supported on K, if and only if the
inequalities in Theorem 2 hold for every posith'e integer p and for every
p-tuple of positive even integers (2n l , 2n 2 , •• " 2n p )' and without restriction
on the degrees of the polynomials A, B, C, D.

Theorem 5 follows from Theorem 4 by application of Helly's theorems,
just as Theorem 3 follows from Theorem 2.

Note that if any of the non-truncated rational moment problems above
has a pole Ai outside K, then the solution of the problem is unique. This
follows from the Stone-Weierstrass theorem [4, p. 272] applied to the
algebra of real-valued functions generated by 1 and (t - A,)-I, and the
Riesz representation theorem. Also, if K is compact and the problem has
a pole at 00, then the solution of the problem is unique, again by the
Stone-Weierstrass theorem and the Riesz representation theorem.

5. AN EXAMPLE

Let AD, AI' A2 ,· •• be real numbers with 0 < A1 < A2 < '" < Ao < 1
and An ~ AD as n ~ 00. We construct a positive Borel measure p. with
finite total mass and supp(p.) = [0,2] such that the functions

i = 0, 1,2 ... ; j = 0, 1,2 ...

belong to LJ(p.). The existence of such a measure p. demonstrates that
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none of the rational moment problems considered above is trivial. (Here, a
trivial problem is one which is solvable only in the special case in which
the given moments co' cy) are all zero.) In this example, the poles
Ao, AI' Az"" are all interior points of sUPP(J.L), and hence the example
shows that, in the case of a countable number of poles, the poles may have
a limit point in sUPP(J.L).

Choose real numbers Po, PI' pz,··. such that

and define the positive Borel measures J.Lo, J.LI' J.L2'· .. , J.Lx by

k = 1,2,3, ... ,

e-I/(t-A lJ )

dJ.Lo(t) = I(A 1)( t) . z dt,
lJo (t - Ao)

dJ.Lx(t) = 1(1.z)(t) . e- t dt,

where 1E is the indicator function of E, E c:;;; IR. Let

J.L = L J.Lk + J.Lo + J.Lx·
k=l

Then J.L is a positive Borel measure and supp(J.L) = [0,2].
For each k = 1, 2, 3, ... , the change of variable x = 1/( t - Ak) gives

and for k = 0 the change of variable x = 1/(t - Ao) gives
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Also

It follows that
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2
p,(IR) = L k2 + 2 < +00

k~'

and hence that p, has finite total mass.
The following estimates show that (I - A)-i, Ii E L'(p,) for i, j =

0,1,2, .... For i, j, k = 1,2,3, ... we have that

i < k => fl(t - A;)-ildp,k(l) = (k l(t - A;)-ijdP,k(l)
Pk-l

i > k => fl(t - A;)-i!dP,k(l) = fPk !(t - A;)-i!dJLk(l)
Pk-l

1 2
~ -----,.

i k 2 '(A;-p;_I)

1 + 00 . 2j!
< - . f IxlJe- 1x1 dx = -
- '2 '2 'I - 00 I
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and also that

fl(t - AJ-ildMo(t) = t(t - A;)-i dMo(t)
A"

1 1
~ iMo(lR) ~ i'

(A o - A;) (A o - AJ

fl(t - AJ-i/dMx(t) = f(t - Ai)-JdMoo(t)
I

I 1
< oMAIR) < o'
-(I-A;)] -(l-Ay

Thus

87

i-I 2
~ 0 E -k2

(A; - Pi_I)] k=1

2
+ E -+

(p;-A;)i k~i+lk2

I I
+ + ----c

(Ao - Ay (1 - Ay

2j!

7

< +00, i,j= 1,2,3, ...

Similar arguments show that (t - Ao)-i, (i E U(JJ.) for j = 1,2,3" ..
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